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INTRODUCTION

Vascular cognitive impairment (VCI) is the 
second most common cause of cognitive 
impairment in the elderly,[1] and among many 

mechanisms and causes, subcortical small vessel 
disease (SSVD) is probably the most frequent.[2] It is 
usually a sporadic disorder of the elderly, due to classical 
cardiovascular risk factors, including hypertension 
diabetes and dyslipidemia.[3] Studies on VCI may 
recruit such patients, and this is frequently done. 
However, up to two-third of such elderly patients may 
harbor concomitant Alzheimer’s disease pathology,[4] 

which may contribute significantly to symptoms and 
the degree of cognitive impairment, and thus, they 
suffer from mixed rather than pure VCI.[5] The use of 
biomarkers, including cerebrospinal fluid biomarkers 
for Alzheimer’s disease, may help in the correct patient 
selection.[2,3] However, such diagnostic procedures are 
costly and not available in all clinical settings. On the 
other hand, SSVD due to inherited causes, although 
much rarer, may offer not only animal models[6] but 
also homogeneous patient samples, usually with 
no additional pathology, more suitable for studying 
pure VCI and understanding the mechanisms of and 
relationship between SSVD, lacunar stroke, and VCI.[7]
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ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is caused by 
mutations in NOTCH 3 gene, and it is the most common cause of inherited cerebral small vessel disease and vascular cognitive 
impairment (VCI). There are manynew insights on the mechanisms of cognitive decline, relevant to the evolution of VCI of 
any cause. The most important issue is that, although being a genetic disease, the phenotype may be worsened by classical 
cardiovascular risk factors, especially hypertension and smoking. Control of these risk factors may delay disease progression 
and disability in CADASIL and, currently, is strongly recommended.
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Inherited cerebral small vessel diseases comprise a group of 
rare monogenic disorders leading to cerebrovascular disease 
and stroke.[8] Among these, cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL) is considered to be the most common (or least 
rare) monogenic cause of inherited stroke, subcortical 
vascular disease, and vascular dementia,[9] comprising ~60% 
of genetic microischemic leukoencephalopathies.[10] It is 
due to mutations in the NOTCH3 gene at chromosmome 
19q12,[11] which causes alterations in vessel wall of arterioles 
(including deposition of granular osmiophilic material), 
resulting in brain tissue ischemia.[12]

Typically, migraine (usually with aura) at about the age 
of 30 or early ischemic events (transient ischemic attacks 
and lacunar stroke) at 41–50 years are the presenting 
symptoms.[13] Neuroimaging features include multiple and, 
later on, confluent ischemic lesions in the white matter (WM) 
and basal ganglia with characteristic involvement of the 
anterior temporal WM and external capsule.[14] As the disease 
progresses and ischemic lesion load increases, behavioral-
psychiatric manifestations and cognitive decline become 
evident as well as bilateral pyramidal and pseudobulbar 
signs lead to vascular dementia, significant motor disability, 
and premature death usually at or before 65–70 years.[15] A 
significant variation in phenotypic presentation, disease 
severity, and rate of deterioration exists among different 
families carrying the same mutation and even among 
patients of the same family. Thus, patients with normal-
appearing magnetic resonance imaging at the 4th decade of 
life,[16] with a later age of disease onset,[17] with a later onset 
of stroke,[18] sometimes as late as the 8th decade,[19] or with 
oligosymptomatic presentations[20] are increasingly being 
recognized. On the other hand, rapid deterioration with severe 
psychiatric symptoms and dementia at the 4th–5th decades is 
not uncommon.[21]

CORRELATES OF DEMENTIA 
SEVERITY

Types of lesions
Very early in the disease process, when patients are still 
asymptomatic or have only migraine and show no evidence 
of cognitive impairment, ΜRIs may initially seem normal. 
However, deposition of protein material in the lymphatic 
drainage pathways in the walls of cerebral vasculature may 
impair drainage of interstitial fluid.[22] Venous vasculature is 
also decreased,[23] while decreased contrast between gray and 
WM in T1 images has been reported,[24] possibly related to 
signal alterations in normal appearing WM. Alterations in 
WM that is normal appearing in conventional images have 
been shown by calculating magnetization transfer values[25] 
and may be observed by diffusion tensor imaging.[26] As 
decreased drainage of interstitial fluid becomes more severe 

and, additionally, some degree of ischemia is present, 
WM (probably intramyelinic) edema occurs[27] and WM 
hyperintensities (WMH) appear [Figure 1a] and become 
progressively numerous. The load of WMH alone showed 
a negative correlation with global cognitive measures, 
frontosubcortical and/or executive function tests, verbal 
fluency, and delayed memory scores.[28] However, despite 
executive and attentional deficits, patients at this stage usually 
show no more than mild disability and no frank dementia.[28]

Dilated perivascular spaces increase with age in the entire 
brain, and it has been suggested that dilated spaces located 
in temporal lobes and subinsular areas are strongly and 
specifically associated with WMH, while dilated spaces in 
the WM independently correlate with cognitive decline.[29] 
Microbleeds in deep or cortical locations may also be present 
and they are independently associated with executive and 
frontosubcortical dysfunction.[28] Emotional symptoms of any 
type (depressive or non-depressive) seem to be associated 
with microbleeds in thalamus and cortex.[30] However, 
WMH alone, even in the presence of microbleeds, produces 
subclinical or mild cognitive impairment, usually reaching 
no more than the threshold of mild dementia.[28] Significant 
axonal damage in addition to demyelination[31] and, 
especially, lacunes[32] [Figure 1b and c] is usually required 
for more severe cognitive dysfunction, since such lesions are 
more able to interrupt important cortico-cortical and cortico-
subcortical circuits and produce disconnection syndromes.

Location of lesions
It seems that the type and extent of lesions are not only the 
parameters affecting the severity of cognitive impairment but 
also their “strategic” location [Figure 2].

Figure 1: Magnetic resonance imaging of cerebral 
autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy patients. (a) Fluid-attenuated inversion 
recovery (FLAIR) image in a young female patient with 
headaches only and no cognitive impairment. Only a few white 
matter lesions are present. (b) FLAIR image and (c) T1 image 
in a female patient with dementia bilateral pyramidal signs 
and severe disability. Diffuse ischemic white matter disease is 
present and lacunes are evident as “holes” with the intensity 
of cerebrospinal fluid. (d) FLAIR image of a male patient with 
dementia and severe cognitive and motor disability. The 
diffuse leucoencephalopathy affects significantly both frontal 
lobes, including the anterior thalamic radiation and, partly, the 
forceps minor. White matter involvement in posterior locations 
is also present
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Arteriolar pathology, WM pathology, and axonal 
abnormalities, although widespread, may severely 
affect the WM of the frontal lobe [Figure 1d], affecting 
frontosubcortical and/or frontocortical networks.[31] Based 
on neuroimaging, five areas show the maximum influence 
in processing speed: lacunar load in the left anterior thalamic 
radiation and left cingulum and WMH in the left forceps 
minor, left parahippocampal WM and left corticospinal 
tract.[33] Since these areas are related with important 
frontosubcortical neuronal circuits (especially, dorsolateral 
prefrontal and cingulate circuits), it is not surprising that the 

above lesions in these areas roughly explain one-third of the 
total variance in processing speed.[33] In addition, lacunar 
lesion load in anterior thalamic radiation is associated with 
the reduced thickness of medial frontal cortex (which, in 
turn, is associated with deficits in processing speed) and 
reduced thickness of right occipitotemporal cortex, the 
latter (lingual, fusiform, and parahippocampal cortices) also 
being associated with abnormal processing speed.[34] It has 
been suggested that, within the WM of the frontal lobe, the 
superior longitudinal fasciculus may be affected even earlier 
than the cingulum bundle.[31] This may result in a frontal 

Figure 2: Mechanisms of vascular cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts 
and leukoencephalopathy (based on Refs 22–34). Mutations of NOTCH3 cause structural and functional disorder of arteriolar 
vessel wall, resulting in partial ischemia (edema) or complete (lacunar) infarction. Gradual increase of vascular lesions leads 
to cognitive impairment. Classical cardiovascular risk factors, if present, enhance the above process and increase the risk of 
disability. WM: White matter, BG: Basal ganglia, ICH: Intracranial hemorrhage
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disconnection syndrome that gradually involves the parietal 
and temporal lobes.

CAUSES OF CLINICAL VARIABILITY 
AND CORRELATES OF ISCHEMIC 
LESION LOAD

Although it is generally accepted that most of the different 
NOTCH3 mutations have little effect in phenotypic 
variability, a minority of mutations affecting the NOTCH3 
ligand binding domain (EGFR10-11) may be associated with 
the decreased load of WMH and better cognitive function.[35] 

Multiple variants of other genes, each with small effect, may 
also influence the load of WM lesions, partly explaining 
some of the phenotypic variations among patients.[36] Sex 
affects clinical presentation. In males, migraine onset occurs 
6 years later, and the first lacunar stroke occurs 7 years 
earlier than in females.[13] Unfortunately, the above factors 
are non-modifiable.

It is long known that, in the appropriate clinical setting, the 
absence of cardiovascular risk factors increases the diagnostic 
probability of CADASIL. This should not be interpreted that 
patients with CADASIL have no cardiovascular risk factors. 
The presence of hypertension, diabetes, dyslipidemia, 
and thrombophilia has been reported in many patients and 
should not preclude the diagnosis of CADASIL.[37,38] If 
present, such factors may modify the clinical features.[38] 
Hypertension independently increases the risk for stroke[38-40] 
and disability due to dementia.[41] Smoking also increases 
the risk of stroke[38,42] and dementia.[42] Hypertension[40] and 
diabetes with increased HbA1c may increase the risk for 
microbleeds.[40,43]

The above observations lead to suggestions for controlling 
these risk factors, especially hypertension and smoking, in 
an attempt to delay lacunar stroke, disease progress, and 
functional disability.[38,42] Such a disease modifying approach 
is being followed during the last decade and is currently 
recommended.[44]

Recently, it has been shown that the epidemiology of 
CADASIL is changing.[18] The median age of first stroke is 
higher than previously estimated, especially in men. Men 
diagnosed after 2006 experiences their first stroke at a 
median age of 56 and 10 years later than those diagnosed 
before 2006.[18] Furthermore, in patients over 58 years old, 
38% remain independent,[18] as compared to 14% of patients 
over 60 years, before 2000.[45] Such a favorable change in the 
natural history of CADASIL may be partly due to a better 
knowledge of the disorder, resulting in increased suspicion, 
better diagnosis, and identification of more “benign” cases. 
However, control of risk factors may have also contributed. 
Indeed, in two monozygotic twins with CADASIL, the one 

that followed preventive measures such as physical activity 
and early control of dyslipidemia with statin showed less 
severe imaging findings and experienced his first stroke 
14 years later than the one which was smoker and delayed 
controlling dyslipidemia.[46]

CONCLUSIONS

Despite being a genetic disease, the phenotype of CADASIL 
may be worsened by classical cardiovascular risk factors. 
Control of such risk factors may delay disease progression and 
disability and, currently, should be strongly recommended.
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