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BACKGROUND

Recent evidence has demonstrated that dental pulp 
stem cells (DPSC) may represent a source of 
pluripotent progenitors capable of differentiating 

into many cell and tissue types,[1,2] some of which may have 
therapeutic potential. Several key markers of pluripotency 
in DPSC have been identified, including the transcription 

factors Oct-4, Sox-2, and NANOG.[3,4] Although many 
studies have evaluated the functional effects of these 
transcriptional activators and repressors, many factors that 
contribute to maintaining pluripotency among DPSC remain 
undiscovered.[5-7]

For example, recent evidence now suggests that mesenchymal 
stem cell (MSC) differentiation may be regulated not only by 
classical stem cell-associated transcription factors (Sox-2, Oct-4, 
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and NANOG) but also through transcriptional modulation by 
long, non-coding RNA known as microRNA.[8,9] In fact, there is 
some evidence that specific microRNAs may also be useful as 
biomarkers to identify and distinguish stem cells with differing 
therapeutic potential.[10-12] Although an extensive body of 
evidence has accumulated regarding the role of microRNAs and 
MSC, a few (if any) studies have focused more specifically on 
the role of DPSC.[13]

Although microRNAs are known to modulate differentiation 
and function in human dental tissues, much of this research 
has focused selectively on tooth development.[14-16] 
Developmental biology requires a thorough understanding of 
these mechanisms; however, recent studies now suggest that 
DPSC may also be useful in bioengineering and therapeutic 
applications for regenerative medicine.[17,18] Promising areas 
of interest include bone and neural tissue engineering using 
DPSC although much remains to be discovered regarding the 
mechanisms that control these processes.[19,20]

Research from our group has evaluated classical biomarkers 
and other factors that may influence the therapeutic potential of 
primary explants and DPSC isolates.[21,22] The most recent study 
from this group may have also identified a limited number 
of microRNAs that may influence DPSC pluripotency and 
differentiation, including miR-27, miR-124, and miR-218.[23] 
Many other studies have examined the role of these microRNAs 
in MSC although only a single, recent study has examined 
miR-218 in DPSC and none have evaluated the concomitant 
presence (or absence) of traditional biomarkers.[24-26]

To advance the evidence in this area, the primary objective 
of this study was to evaluate the expression of microRNA 
in DPSC isolates to compare with classical biomarkers of 
cellular phenotypes and pluripotency.

MATERIALS AND METHODS

Human subjects
This project was reviewed and approved by the Institutional 
Review Board (IRB) and Office for the Protection of 
Research Subjects (OPRS) under protocol OPRS#763012-1 
“retrospective analysis of dental pulp stem cells (DPSC) 
from the University of Nevada, Las Vegas – School of Dental 
Medicine pediatric and adult clinical population.” DPSC 
was originally collected using protocol OPRS#0907-3148 
“isolation of non-embryonic stem cells from dental pulp.”

In brief, patients scheduled for extraction of third molars for 
orthodontic treatment (primarily indicated for spacing and 
crowding) were asked to participate. Informed consent (and 
pediatric assent) were provided. Exclusion criteria included 
refusal to participate, refused to provide Informed Consent/
Assent, or compromised dental pulp due to injury, fracture, 
infection or disease.

Following cross-sectioning of the extracted tooth at the 
cementoenamel junction, DPSC was extracted from the 
pulp chamber using an endodontic broach and transferred 
to the laboratory for culture and analysis, as previously 
described.[27,28] Growth for a minimum of 10 passages was 
allowed for each DPSC isolate, as part of the direct outgrowth 
method.[29,30]

Growth and proliferation
Doubling time (DT) was established for each DPSC isolate 
using the growth rate measured between 1:4 passaging and 
achieving confluence. These data were used to characterize 
three distinct categories of DPSC growth: Rapid DT (rDT) 
of 2–3 days, intermediate DT (iDT) 5–7 days, and slow DT 
(sDT) of 10–14 days.[21,22]

Cellular viability and photomicroscopy
Analysis of cellular viability was performed using the Trypan 
blue exclusion method and the BioRad TC20 automated cell 
counter, using the manufacturer recommended protocol. 
These data provided both live and total cell counts, allowing 
for the calculation of the percentage of viable cells in each 
sample, as previously described.[27,28,31] Digital images 
of DPSC isolates were captured using the Lionheart LX 
Automated Microscope and ×20 objective lens.

Statistical analysis
Rates of proliferation and cellular viability were measured, 
and these descriptive statistics were collected and analyzed 
using the Student’s two-tailed t-test. Statistical significance 
was set using an alpha level (α) =0.05.

RNA isolation and polymerase chain reaction (PCR)
RNA was extracted from each DPSC isolate using total RNA 
isolation reagent from Molecular Research Center and the 
manufacturer recommended protocol.[23,27] RNA was analyzed 
to determine the purity using spectrophotometric absorbance 
readings at 260 and 280 nm (A260:A280 ratio). All samples 
were required to meet the standard A260:A280 >1.65.

Screening for mRNA expression was facilitated using the 
ABgene Reverse-iT One-Step reverse transcription (RT)-PCR 
kit and protocol. The basic specifications were an initial RT at 
47°C for 30 min and 30 cycles of the following: Denaturation 
95°C, annealing 30 s at selected primer temperature (see below), 
and final extension 60°C for 60 s. Results were obtained using 
gel electrophoresis and visualized using ethidium bromide 
with a Kodak Gel Logic 100 Imaging System. Primers were 
synthesized from Eurofins MWG Operon, as follows:

DPSC biomarker primers
Oct-4 forward, 5’-TGGAG AAGGAGAAGC TGG 
AGCAAAA-3’; 25 nt: 48% GC; Tm 70C Oct4 
reverse,5’-GGCAGATGGTCGT TTGGCTGAATA-3’; 
24 nt; 50% GC; Tm 70C Optimal Tm: 71C.
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Sox2 forward, 5’-ATGGGCT CTGTGG TCAAGTC-3’; 
20 nt: 55% GC; Tm 67C Sox2 reverse, 5’-CCCTCCCAA 
TTCCCTTGTAT-5’; 20 nt; 50% GC; Tm 64C Optimal Tm: 65C.

NANOG forward, 5’-GCTGAGA TGCCTCACAC 
GGAG-3’; 21 nt; 62% GC; Tm 71C NANOG reverse, 
5’-TCTGTTTCTTGACTGGGACCTTGTC-3’; 25 nt: 48% 
GC; Tm 69C Optimal Tm: 70C.

Nestin forward, 5’-CGTTGGAAC AGAGGTTGGAG-3’; 20 
nt; 55% GC; Tm 66C Nestin reverse, 5’-TCCTGAAAGCT 
GAGGGAAG-3’; 19 nt; 53% GC; Tm 64C Optimal Tm: 65C.

MicroRNA screening primers
miR-27 forward, 5’-ATATGAGA AAAG AGCTT 
CCCTGTG-3’; 24 nt; 42% GC; Tm 64C miR-27 reverse, 
5’-CAAGGCC AGAGGAG GTGAG-’3’; 19 nt; 63% GC; 
Tm 64C Optimal Tm: 65C.

miR-218 forward, 5’-TCG GGCTT GTGCTT GATCT-3’; 
19 nt; 53% GC; Tm 67C miR-218 reverse, 5’-GTGCAGGG 
TCCGAGTG-3’; 16 nt; 69% GC; Tm 66C Optimal Tm: 67C.

miR-124- forward, 5’-ATGAATTC TCGCCA GC TTTT 
TCTT-3’; 24 nt; 38% GC; Tm 65C miR-124 reverse, 
5’-ATGAATTCA TTTGCAT  CTGCACAAACCC-3’; 28 nt; 
39% GC; Tm 65C Optimal Tm: 66C.

miR-16 forward, 5’-TAGCAGCA CGTAAATAT TGGCG-
3’; 22 nt; 45% GC; Tm 65C miR-16 reverse, 5’-TGCGTG 
TCGTGGAGTC-3’; 16 nt; 63% GC; Tm 65C Optimal 
Tm: 66C.

RESULTS

Evaluation of the growth and proliferation rates of each DPSC 
isolate resulted in categorization of DPSC isolates into rDT, 
iDT, and sDT [Table 1]. The average DT for the rapid DPSC 
was 2.2 days, which was significantly less than the average 
DT for the intermediate (6.25 days) and slow DPSC isolates 
(12.1 days), P = 0.0241.

Cellular viability was then measured for each DPSC isolate 
to determine if any correlations could be found with growth 
rates and DT [Table 2]. In brief, the cellular viability for the 
rDT DPSC isolates averaged 56%, ranging between 52% 
and 59%. The average was considerably higher than those 
observed among the iDT DPSC isolates (37%, range 35–39%) 
or sDT DPSC isolates (31%, range 29–34%), P = 0.311.

To more closely evaluate cellular phenotypes and morphology 
as well as to evaluate the presence of both viable and non-
viable cells, digital micrographs were obtained from each 
DPSC isolate [Figure 1]. Briefly, these data demonstrated 
multiple, non-adherent DPSC cells with fewer cells displaying 

signs of apoptosis (intense blebbing) among the rDT isolates 
[Figures 1a and 1c]. Higher proportions of these non-viable 
cells were observed among the iDT [Figure 1d and h] and 
sDT isolates [Figure 1e and g].

To evaluate the association between growth and viability, 
DPSC biomarkers (Oct-4, Sox-2, NANOG, and Nestin) and 
microRNAs (miR-27, miR-218, miR-124, and miR-16) were 
evaluated using RT-PCR for comparison with graphs of live 
and viable cells [Figure 2]. More specifically, the total live 
counts from each cell line were plotted, which revealed the 
highest numbers among the rDT and iDT isolates [Figure 2a]. 
These data appear to correlate with the expression of 
NANOG, Sox-2, and Oct-4 among the rDT and iDT isolates 
although some variability in mRNA expression was observed 
[Figure 2b].

Although mRNA expression of at least two DPSC biomarkers 
was noted in all rDT and iDT isolates, the expression of 
all DPSC biomarkers was noted in only one DPSC isolate 
(DPSC-7089), which was observed to have the highest 
overall live cell count and cell viability [Figure 2b and c]. 
In addition, Oct-4 expression was not observed in either of 
the iDT isolates (DPSC-8124 and DPSC-17322). However, 
the expression of Sox-2 and NANOG was observed in all 
of the iDT isolates, unlike the variable expression observed 
among the rDT isolates.

The highest overall viability was verified among the rDT isolates 
(DPSC-3882, DPSC-5653, and DPSC-7089) with an average 
exceeding 50% [Figure 2c]. These data appear to correlate with 
the expression of miR-27, which was observed only among the 
rDT isolates [Figure 2d]. Expression of miR-124 was restricted 

Table 1: Analysis of DPSC growth rates
DPSC isolate DT (days) Categorization
DPSC‑3882 2.6 rDT

DPSC‑5653 2.1 rDT

DPSC‑7089 1.9 rDT

rDT average: 2.2
range: 1.9–2.6

DPSC 8124 5.9 iDT

DPSC‑17322 6.6 iDT

iDT average: 6.25
range: 5.9–6.6

DPSC‑11418 10.2 sDT

DPSC‑11750 13.1 sDT

DPSC ‑11836 12.9 sDT

sDT average: 12.1
range: 10.2–13.1

DPSC: Dental pulp stem cells, DT: Doubling time, sDT: Slow DT, 
rDT: Rapid DT, iDT: Intermediate DT
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to the sDT isolates, which appeared to have the lowest overall 
viability (approximately 30%), with variable expression 
observed with miR-218. It was noted that only miR-16 (control) 
expression was observed among the iDT isolates, with no 
expression of miR-27, miR-124, or miR-218 observed.

DISCUSSION

The primary objective of this study was to evaluate the 
expression of microRNA in DPSC isolates to compare with 

classical biomarkers of cellular phenotypes and pluripotency. 
Evaluation of the growth and proliferation rates of each cell 
line resulted in the categorization of DPSC isolates into 
rDT, iDT, and sDT, which demonstrated higher viability 
among the most rapidly proliferating DPSCs. Analysis of 
DPSC biomarkers (Oct-4, Sox-2, and NANOG) revealed 
an association with total live cell count, while microRNA 
expression (miR-27, miR-218, miR-124, and miR-16) 
appeared to be more closely associated with viability.

These data appear to confirm recent studies that demonstrated 
proliferation and growth potential among DPSC isolates to 
be closely linked with expression of Sox-2 and other DPSC 
biomarkers, such as Oct-4.[32-34] The results of this study 
also support previous findings from this group regarding the 
association between DT (growth) and these biomarkers. [21,22,27] 
In addition, these data also confirm one of the only studies to 
demonstrate an association between microRNA expression 
(miR-218) and DPSC viability and differentiation potential.[35]

Although only limited evidence regarding DPSC and 
microRNAs may be available, a growing body of evidence 
regarding microRNA expression and stem cell differentiation 
may suggest that further research in this area is warranted.[36,37] 
For example, miR-124 is a key regulator of osteogenic, 
myogenic, and neuronal differentiation in MSC although 
this role has yet to be confirmed among DPSC.[38-40] miR-218 
may also function in a similar capacity, as a key regulator of 
osteogenic differentiation in MSC.[41]

The role of miR-27 in the differentiation of other MSC may 
be the most thoroughly examined of these microRNAs.[24,25] 
For example, miR-27 has been shown to promote osteoblast 
differentiation by directly modulating transcription of several 
key components of the beta-catenin/Wnt pathway.[42] miR-27 
may also function to promote myeloblast differentiation through 
direct and indirect modulation of Runx1 transcription.[43,44] 
However, miR-27 has also been shown to inhibit adipose 
differentiation and mitochondrial function through multiple 
pathways in other types of adipose-derived MSC.[45-47]

CONCLUSIONS

Although this study was limited to a small number of DPSC 
isolates, these results suggest a more thorough investigation 
and evaluation of biomarkers and microRNA expression 
may be necessary to elucidate the associations and complex 
interconnections with DPSC viability, proliferation, 
differentiation, and pluripotency.
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Table 2:Trypan blue exclusion assay test for DPSC 
viability

DPSC isolate Cellular viability Categorization
DPSC‑3882 1.62×105 cells/mL TC

0.84×105 cells/mL LC
Viable: 52%

rDT (2.6 days)

DPSC‑5653 1.90×105 cells/mL TC
1.12×105 cells/mL LC
Viable: 59%

rDT (2.1 days)

DPSC‑7089 3.35×105 cells/mL TC
1.90×105 cells/mL LC
Viable: 57%

rDT (1.9 days)

rDT Ave: 2.29×105 
cells/mL TC
Ave: 1.29×105 
cells/mL LC
Average viability: 56%

DPSC 8124 3.68×105 cells/mL TC
1.45×105 cells/mL LC
Viable: 39%

iDT (5.9 days)

DPSC‑17322 2.90×105 cells/mL TC
1.00×105 cells/mL LC
Viable: 35%

iDT (6.6 days)

iDT Ave: 3.29×105 
cells/mL TC
Ave: 1.23×105 
cells/mL LC
Average viability: 37%

DPSC‑11418 3.24×105 cells/mL TC
0.948×105 cells/mL LC
Viable: 29%

sDT (10.2 days)

DPSC‑11750 3.24×105 cells/mL TC
1.00×105 cells/mL LC
Viable: 31%

sDT (13.1 days)

DPSC‑11836 1.62×105 cells/mL TC
0.558×105 cells/mL LC
Viable: 34%

sDT (12.9 days)

sDT Ave: 2.70×105 
cells mL TC
Ave: 0.835×105 
cells/mL LC
Average viability: 31%

DPSC: Dental pulp stem cells, DT: Doubling time sDT: Slow DT, 
iDT: Intermediate DT, rDT: Rapid DT
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