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INTRODUCTION

Inflammation is body inbuilt defense mechanism as a 
response to injuries. Chronic inflammation is a prolonged 
inflammation resulting in noticeable terminal damage 

to blood vessels, cells, and organs causing multiple health 
problems such as diabetes, cancers, asthma, cardiovascular 
diseases, psoriasis, and neurodegenerative diseases as well 
as joint pains.

Angiogenesis and inflammation had been linked to the 
imperative basis of multiple chronic inflammatory disorders 
including Crohn’s disease, lupus, inflammatory bowel 
disease, sepsis, gastritis, atherosclerosis, rheumatoid arthritis, 
psoriasis, diabetes, cancer, and metastasis. Environmental 
and habitual factors like pollution, lack of exercise, diet, 
stress, obesity, smoking, oral health and excessive alcohol 
consumption might lead to chronic inflammation.  As a 
result, white blood cells form groups without any purpose 
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and ultimately attack cells and tissues of internal organs. In 
general, chronic inflammation did not reveal any symptoms 
but only could be detected by elevated C-reactive protein 
levels (CRP).[1-3]

CHRONIC 
INFLAMMATION‑ASSOCIATED 
AILMENTS

Heart disease
In cardiovascular diseases, cholesterol gets deposited in the 
blood vessel lining acting as an insult leading to systematic 
inflammation, resulting in blockages and blood clots causing 
heart attacks. Hence, people with chronic inflammation from 
an autoimmune disorder might be at greater risk for heart 
disease. In addition, bacteria from gum disease reached blood 
vessels and heart causing inflammation that elevated the 
chance of heart attack. The increased levels of some nuclear 
factor kappa B (NF-κB) activators such as osteoprotegerin 
were linked to cardiac disease-related mortalities.[4,5]

Diabetes
In diabetes, nuclear factor kappa-light-chain-enhancer of 
activated beta cells (NF-κB) was activated by multiple pro-
inflammatory cytokines for normal survival and death of 
β-cells. β-cells were destroyed with the activation of inducible 
nitric oxide synthase (iNOS) gene expression and successive 
formation of NO. Interleukin-1 β (IL-1β)-induced NF-κB 
activation resulted in apoptosis of β-cells in the pancreas, 
in type-1 diabetes, whereas, in type-2 diabetes, activated 
NF-κB induced apoptosis and insulin resistance. NF-κB was 
upregulated with interactions of advanced glycation end 
products and their receptor advanced glycation end products. 
Uninterrupted activation of NF-κB stimulated a systemic 
inflammation, a contributory factor for the development of 
multiple diabetic ailments such as diabetic cardiomyopathy, 
retinopathy, nephropathy, and neuropathy, suggesting a need 
for NF-κB-based therapeutic approach.[6]

Lung tissues
Chronic inflammation in lungs was associated with various 
problems such as chronic obstructive pulmonary disease 
(COPD) and asthma. Inflammation of the lungs resulted in 
fluid accumulation, thereby narrowing the airways making 
breathing arduous. COPD developed as a chronic and 
significant inflammatory response to inhaled irritants. COPD 
was a third most common cause of death in the United 
States.[7,8]

Anger disorder and aggressive behavior
Individuals with high aggressive behavior displayed elevated 
inflammatory cytokine levels and deregulated immune 
responses including slower wound healing. Cytokines 
produce sickness behaviors including reduced activity, food 

intake, and social interaction together with increased sleep 
and anhedonia. Higher levels of inflammatory markers 
such as tumor necrosis factor alpha (TNF-α), CRP and IL-6 
were found in people with intermittent explosive disorder 
appeared to be related to the aggressive behavioral aspect in 
humans. Increased NF-κB inflammatory signaling included 
the elevated expression of pro-inflammatory cytokines.[9,10]

Bone health
Chronic inflammation was linked to increased bone loss and 
lack of bone growth where cytokines in the blood interfered 
with bone renovation, a process in which damaged old bones 
were replaced with the new. In addition, inflammation in gut 
decreased the absorption of nutrients such as calcium and 
vitamin D which were essential to bone health.[11]

Cancer
When immune cells infiltrated the tumor in an inflammatory 
response, tumor grows utilizing those immune cell nutrients 
and oxygen instead of getting destroyed. Gene mutations 
occurred as a result of chronic inflammatory response which 
triggered the loss of proteins involved in deoxyribonucleic 
acid (DNA) repair. Occasionally, chronic inflammation might 
serve as a precursor to certain cancers associated with DNA 
damage which could lead to cancer. People with chronic 
inflammatory bowel diseases, ulcerative colitis, and Crohn’s 
disease were at an increased risk of colon cancer.[12]

It has long been assumed that NF-κB signaling played 
an important role in chronic inflammation-associated 
malignancies and other inflammation-associated disorders 
although genetic evidence for this hypothesis had been 
lacking. However, recent studies suggested the vitality of 
NF-κB activation in tumor cell survival, angiogenesis, and 
metastatic potential. NF-κB activation of tumor-associated 
leukocytes and macrophages, in particular, resulted in 
tumorogenesis through the upregulation of tumor-promoting 
pro-inflammatory proteins, emphasizing the importance of 
NF-κB inhibitors as immunotherapeutic agents to reduce 
or prevent chronic inflammation. Therefore, it was obvious 
that NF-κB inhibitors might inhibit or prevent chronic 
inflammation-related tumorogenesis as well as angiogenesis 
and metastasis.[13,14]

CELLULAR MECHANISMS 
OF NF‑ΚB ASSOCIATED 
INFLAMMATION

A number of inflammatory mechanisms occurred by the 
activation of inflammatory factor, NF-κB, a protein complex 
controlled transcription of DNA, cytokines production, and 
cell survival. In addition, NF-κB was involved in cellular 
responses to inflammation stimuli caused by cytokines, 
heavy metals, ultraviolet irradiation free radicles, bacterial 
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or viral antigens, and oxidized low-density lipids including 
stress. The unwanted inflammation process could be reduced 
by switching off NF-κB actions thereby minimizing damage 
to cells, tissues, and organs. Recognized inducers of NF-κB 
activity were TNF interleukin 1-β (IL-1β), reactive oxygen 
species (ROS), osteoprotegerin, isoproterenol, bacterial 
lipopolysaccharides (LPS), cocaine, and ionizing radiation. 
The recognized activity of NF-κB was associated with the 
regulation of inflammatory responses as well as activation, 
differentiation, and effective function of inflammatory 
T-cells. The increased levels of TNF-α regulated protein 
kinase B (AKT)/mammalian target of rapamycin pathway 
were essential for the management of skeletal muscle 
hypertrophy. NF-κB pathway regulated pro-inflammatory 
cytokine production and leucocyte recruitment which were 
primary contributors to inflammatory response. NF-κB 
reduction contributed to the control of multiple inflammatory 
mechanisms thereby diminishes enormity and duration of 
inflammatory response.[15,16] [Figure 1].

NF-κB was a central regulator of distinctive immune 
response. Usually, NF-κB was activated as host protective 
mechanism, and long-term activation of NF-κB was 
tumorigenic in nature. Furthermore, NF-κB recurrent 
activation obstructed the activities of inflammatory mediator, 
resulting in tumor progression. Multiple small molecules 
from natural or synthetic origin targeted different signaling 
pathways including NF-κB pathway and p53 protein (p53), 
thereby establishing a prominent change in cancer treatment 
and management. The anticancer activity of various NF-κB 
inhibitors was partly due to their capacity to induce p53 in 
cancer cell.[17]

Selective natural products were inhibitors of NF-κB signaling 
by intercalating to the enhancer sequences of heavy chain of 
immunoglobulin and gene kappa light chain. NF-κB was 
a group of interrelated transcription factors including five 

genes: NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), 
c-Rel, and RelB. In cancers, inflammatory stimuli controlled 
the mechanisms of gene expression. In this process, the 
cells ceased to relate their existence with underlying 
mechanisms, coordinating their phenotype and functions. 
NF-κB activation was triggered by two separate pathways 
such as canonical and non-canonical (alternative) pathways. 
The canonical pathway was activated by toll-like receptors 
and pro-inflammatory cytokines (TNFα and IL-1), directing 
the activation of Re1A that controlled the expression of pro-
inflammatory and cell survival genes. The alternative NF-κB 
pathway was activated by lymphotoxin β (LΤ β), CD40 
ligand, B-cell activating factor belonging to the TNF family 
(BAFF), and receptor activator of NF-κB ligand (RANKL) 
resulting in activation of RelB/p52 complexes. Alternative 
pathway activation regulated genes that were required for 
lymph-organogenesis and B-cell activation. A variety of 
cytokines, growth factors, and kinases involved in signaling 
pathways triggered the activation of NF-κB, key protein, 
a major therapeutic target for drug discovery in cancer 
inflammation and progression.[18-21] NF-κB signaling system 
had been established to be a mediator of inducible and tissue-
specific gene control. Nonetheless, NF-κB/REL complexes 
contained homoor heterodimers of the proteins of NF-κB and 
Rel families. The Rel family included RelA p65, c-Rel, and 
RelB proteins, whereas NF-κB family comprised p50 (p105) 
and p52 proteins (p100). Usually, NF-κB complexes were 
localized in cytoplasm by binding to inhibitory IkB proteins. 
(IκBα a, IκBß, IκBγ, IkBε and Bcl3). Phosphorylation 
of IkB proteins transpired through activation of either 
external or internal signals. Later, they were ubiquitinated 
and destroyed in proteasomes. IkB protein release from 
Rel homology domain of Rel protein disclosed nuclear 
localization sequence domain. Furthermore, NF-κB-complex 
migrated into nucleus and activated the transcription of genes 
including inflammatory genes. There were variations in the 
activation of NF-κB-complex signaling pathways upstream. 
Furthermore, there were alterations in transactivation ability 
of NF-κB-complexes at the transcription level. The protein 
kinases that phosphorylated IkB proteins were I-kappa B 
kinases (IKKs) (IkB kinases α and β). NF-κB-signaling 
pathway is NF-κB-essential modulator and regulatory 
subunit of IKK complex.  IKKs were controlled by various 
interacting proteins by connecting IKK complex to canonical 
pathway thereby regulating the activation of IKK. The other 
non-canonical NF-κB pathway was activated by NF-κB-
inducing kinase (NIK) which facilitated signals from CD40, 
lymphotoxin, and BAFF/BLys receptors. This pathway was 
IKK dependent and however,  IκB-independent. Furthermore, 
non-canonical NF-κB pathway regulated NF-κB-activation 
through p100 (NF-κB-p52) subunit handling.. IKKα/IKKβ 
was a junction for NF-κB-mediated inflammatory signaling. 
Furthermore, several cytokine receptors were connected to 
NF-κB-signaling to increase and enumerate the inflammatory 
responses. NF-κB-system was a cytoplasmic sensor that 

Figure 1: Inflammation associated nuclear factor kappa beta 
signaling mechanism
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responded to immune assaults as well as to various external 
and internal hazard signals such as hypoxia, oxidative, and 
genotoxic stress. NF-κB-signaling signified the connection 
between inflammation and cancer. The genes responsible 
for inflammation contributing to the activation of NF-κB-
signaling were important targets for drug discovery.[22-25] 
[Figure 2].

Natural products as anti-inflammatory activators through the 
suppression of NF-κB signaling.

Several herbal remedies proved to be potent drugs against 
various NF-κB - associated inflammatory ailments and 
cancer. Selective inhibition of IKKβ, a mediator of innate 
immune responses and cancer, proved to be a proper strategy 
to block NF-κB - signaling. Various plant-derived products 
had been established as possible inhibitors of NF-κB-pathway 
including lignans, polyphenols, and terpenoids.[26] Various 
natural products inhibited inducible as well as constitutively 
active NF-κB-activities, and some of these compounds 
with specificity toward IKK or IKKK, IκBα stability, p65 
translocation, and DNA binding in NF-κB-activation pathway 
have been reported.[27]

Astaxanthin, (1) a xanthophyll mostly present in salmon, 
shrimp, and crab, blocked the activation of IKKα kinase and 
IκBα protein degradation as well as nuclear movement of 
NF-κB-p65 subunit in addition to inflammatory NF-κB-
dependent gene expression, thereby reducing inflammation 
through its antioxidant activity.[28,29] β-carotene (2) suppressed 
LPS-induced NF-κB-signaling and expression of 
inflammatory genes by blocking the degradation of IκBα 
protein, nuclear migration of p65 protein, DNA binding of 
NF-κB-complex, LPS-induced expression iNOS, 
cyclooxygenase-2 (COX-2), TNF-α, and IL-1β expression.[30] 

Capsaicin (3), a known inhibitor of NF-κB, from chili peppers 
(Capsicum species) prevented IκBα degradation and nuclear 
translocation of p65. Moreover, capsaicin (3) prevented 
NF-κB-activity by blocking the degradation and 
phosphorylation of IκBα. Capsaicin (3) inhibited production 
of LPS-induced prostaglandin E2 (PGE2) and curbed COX-2 
enzyme activity as well as the expression of iNOS protein. 
Capsaicin (3) entirely blocked LPS-induced disappearance of 
IkB-α and inactivated NF-κB. Capsaicin (3) inhibited 
constitutive as well as IL-1β-induced and TNF-α-induced 
IL-8 expression.[31,32] Curcumin (4), a major constituent of 
Curcuma longa (turmeric) rhizomes, inhibited IKK, pro-
inflammatory TNF-2α, COX-1, COX-2, and p53 activation 
by inhibiting mouse double minute 2 homologue and 
regulating other signaling pathways. Curcumin (4) inhibited 
the expression of COX-2 gene induced by phorbol 12-m/
restate 13-acetate and TNF-α or fecapentaene-12 in human 
colon epithelial cells. Curcumin (4) wedged tumor promoter-
mediated NF-κB-transactivation through inhibition of NIK/
IKK signaling complex. Furthermore, curcumin (4) 
suppressed IKK and inhibited constitutive and inducible 
NF-κB-activation as well as strengthened TNF-α-apoptosis. 
Curcumin (4) curbed Ras/mitogen-activated protein kinase 
(MAPK) and phosphoinositide 3-kinase/AKT signaling 
pathways that were involved in the activation of NF-κB.[33-36] 
Resveratrol (5) obstructed NF-κB/p65 and p53transcriptional 
functions by the deacetylation of specific residues. 
Resveratrol (5) treatment increased chromatin-associated 
sirtuin 1 (SIRT1), cellular inhibitor of apoptosis 2 promoter 
regions in the cells. This effect correlated with the loss of 
NF-κB-regulated gene expression and cell sensitivity to 
TNFα induced apoptosis suggesting that SIRT1 activity 
increased apoptosis in response to TNFα with decatalyse 
capacity to inhibit the transactivation capacity of RelA/p65 
protein.[37-40] Apigenin (6) present in parsley, thyme, and 
peppermint intercepted p65 phosphorylation by inhibiting 
IKK functions. In addition, apigenin (6) suppressed NF-κB-
translocation to nucleus which resulted in the inhibition of 
IκBα degradation and phosphorylation. Apigenin (6) 
regulated NF-κB-activity through hypophosphorylation of 
Ser 536 in P65 subunit, in non-canonical pathway. 
Furthermore, apigenin (6) inactivated IKK complex 
stimulated by LPS. In addition, apigenin (6) inhibited LPS-
induced TNF in vivo. Besides, apigenin (6) inhibited mortality 
induced by lethal doses of LPS suggesting a molecular 
mechanism of apigenin (6) in inflammation suppression and 
modulation of immune response.[41] Apigenin (6) strengthened 
activation-induced cell death by inhibiting NF-κB-activation 
and supressing NF-κB-regulated antiapoptotic molecules 
(cFLIP, Bcl-x (L), Mcl-1, XIAP, and IAP) and supressed 
NF-κB-translocation to nucleus. Moreover, apigenin (6) 
inhibited IκBα phosphorylation and degradation as a response 
to T-cell receptor (TCR) stimulation in reactivated peripheral 
blood CD4-positive T-lymphocyte (CD4 T cells). Besides, 
apigenin (6) suppressed the expression of COX-2 protein in 

Figure 2: Canonical and non-canonical (alternative) pathways 
of nuclear factor kappa beta signaling activation
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activated human T-cells.[42] Genistein (7) from soybeans and 
fava beans obstructed the activation of NF-κB-and 
degradation of IκBα as well as inhibited NF-κB-signaling 
through AKT pathway. Genistein (7) treatment of human 
myeloid cells, T-cells, and epithelial cells completely 
suppressed TNF-induced NF-κB-activation correlated with 
protein tyrosine kinase activity. In addition, genistein (7) 
inhibited the activation of NF-κB-and AKT signaling 
pathways which maintained the balance between cell survival 
and programmed cell death (apoptosis), angiogenesis, and 
metastasis.[43,44] Luteolin (8) present in celery, broccoli, green 
pepper, parsley, and thyme prevented NF-κB-activity through 
the accumulation of ROS. Luteolin (8) markedly controlled 
NF-κB-activation while potentiated c-jun amino-terminal 
kinase c-jun N-terminal kinase (JNK) to increase apoptosis 
induced by TNF in lung cancer cells. Furthermore, luteolin 
(8) induced an early phase of ROS segregation through 
suppression of cellular superoxide dismutase (SOD) activity. 
Therefore, accumulating ROS induced by luteolin (8) played 
an important role in the suppression of NF-κB-and 
potentiation of JNK to sensitize lung cancer cells to go 
through TNF-induced apoptosis.[45] Epi-catechin (9) an 
important constituent of green tea, coco, and grapes stalled 
the constitutive NF-κB-activity by obstructing p65 nuclear 
translocation and inhibited NF-κB DNA-binding activity. 
Epi-catechin (9) inhibited NF-κB-DNA binding by preventing 
NF-κB-as well as NF-κB-dependent gene expression in 
L-428 and KM-H2 cells.[46] Epi-gallocatechin-3-gallate (10), 
a constituent of green tea, reduced IKK activation, IκBα 
degradation, NF-κB-activation, and phosphorylation of p65 
subunit of NF-κB-and prevented nuclear translocation of 
p65. Epi-gallocatechin-3-gallate (10) reduced IL-1 
β-mediated IL-1β receptor-associated kinase (IRAK) 
degradation and the subsequent downstream of signaling 
episodes, IKK activation, IκBα degradation and NF-κB-
activation. Besides Epi-gallocatechin-3-gallate (10) curbed 
phosphorylation of p65 subunit of NF-κB-which was evident 
by the inhibition of IL-8 gene expression. Epi-gallocatechin-
3-gallate (10) inhibited prototype tumor promoter 
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced DNA 
binding of NF-κB-and cyclic adenosine 3’,5’-monophosphate 
response element binding protein (CREB) in mouse skin. 
Furthermore, epi-gallocatechin-3-gallate (10) repressed TPA-
induced phosphorylation and the consequent degradation of 
IκBα and simultaneously restricted nuclear translocation of 
p65. Epi-gallocatechin-3-gallate (10) inhibited TPA-induced 
DNA binding of NF-κB-and CREB by blocking activation of 
p38 MAPK. suggesting a molecular basis of COX-2 inhibition 
by epi-gallocatechin-3-gallate (10) in mouse skin. Epi-
gallocatechin-3-gallate (10) inhibited build-up of LPS-
induced IL-12p40, IL-6, monocyte chemoattractant protein-1, 
intercellular adhesion molecule 1 (ICAM-1), vascular cell 
adhesion protein, and mRNA in bone marrow-derived 
macrophages. Moreover, epi-gallocatechin-3-gallate (10) 
restricted LPS-induced IκBα degradation as well as RelA 

nuclear translocation. Consequently, epi-gallocatechin-3-
gallate (10) could prevent LPS-induced pro-inflammatory 
gene expression through the restriction of NF-κB-and MAPK 
signaling pathways.[47-49] Saxifragin (11) (quercetin 
5-glycoside) is widely distributed in plants as well as insects 
and displayed peroxynitrite-scavenging effects. Saxifragin 
(11) suppressed the production of NO and PGE2 in LPS-
activated RAW 264.7 macrophages by suppressing the level 
of protein and mRNA expression of iNOS and COX-2, 
respectively. In addition, saxifragin (11) inhibited the mRNA 
expression of pro-inflammatory cytokines comprising TNF-
α, IL-6, and IL-1β. The inhibitory effects of saxifragin (11) 
on NF-κB were a result of activation of caspase-1 and 
phosphorylation of Jun-N-terminal kinase (JNK) and 
extracellular signal-regulated kinase (ERK). Moreover, 
pretreatment with saxifragin (11) increased the survival rate 
of mice with LPS-induced septic death. Thus, saxifragin (11) 
displayed anti-inflammatory activity through the inhibition 
of NF-κB, caspase-1, and MAPK activation.[50] Sesamin (12) 
from the bark of Fagara species and sesame oil prevented 
TNF-induced IKK activation. IκBα degradation and 
phosphorylation; down-regulated constitutive and inducible 
NF-κB-activation and suppressed P65 phosphorylation and 
nuclear translocation. Sesamin (12) assisted in the prevention 
of hyperlipidemia, hypertension, and carcinogenesis and 
inhibited the proliferation of wide variety of tumor cells 
including leukemia, cancers of colon, pancreas, lung, 
prostate, and breast as well as multiple myeloma. In addition, 
sesamin (12) increased TNFα induced apoptosis associated 
with suppression of gene products related to cell survival 
(Bcl-2 (B-cell leukemia/lymphoma 2 protein Bcl-2)), 
proliferation bcl-1 proto-oncogene product (cyclin D1)), 
inflammation (COX-2), invasion (matrix metalloproteinases-9 
[MMP-9] and ICAM-1), and angiogenesis. Sesamin (12) 
reduced constitutive and inducible NF-κB-activation which 
was initiated by multiple inflammatory stimuli and 
carcinogens. Furthermore, sesamin (12) reduced the 
degradation of IκBα by supressing phosphorylation of IκBα 
there by inhibiting the activation of clampdown of p65 
phosphorylation and nuclear translocation as well as NF-κB-
mediated reporter gene transcription. Moreover, sesamin (12) 
markedly reduced LPS-stimulated IL-6 mRNA and protein in 
microglia cells (BV-2). Sesamin (12) decreased LPS-
activated p38 MAPK and NF-κB-activation. Furthermore, 
SB203580 (inhibitor of p38 MAP kinase) inhibited LPS-
induced IL-6 production.[51,52] Xantholhumol (13) (Hops) 
controlled T cell-mediated immune responses by inhibiting 
NF-κB-transcription factor through the suppression of 
phosphorylation of IκBα (inhibitor of NF-κB) [Figure 3].[53]

A number of monoterpenoids, sesquiterpenoids, and 
diterpenoids displayed anti-inflammatory activity by 
intercepting NF-κB-signaling pathways. Humulene (14) 
present in Humulus lupulus (hops) significantly reduced LPS-
induced NF-κB-activation as well as inflammatory response. 
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However, humulene (14) did not alter the activation of ERK, 
p38, and JNK.[54] Zerumbone (15), a potent anti-inflammatory 
and anticancer agent isolated from Zingiber zerumbet (ginger), 
curbed the function of IKK complex as a result of reduced 
protein phosphorylation and degradation of IκBα) proteins, 
consequently resulting in a decrease in nuclear translocation 
of NF-κB-complex and gene expression.[55,56] Carnosol (16) 
from Rosmarinus officinalis (Rosemary) curbed the activation 
of NF-κB-system through inhibiting IκBα phosphorylation 
and reducing the expression of iNOS and NO production. 
Metastasis was suppressed by carnosol (16) through the 
blockade of MMP-9 expression with the downregulation of 
NF-κB-and c-Jun protein-mediated signaling as a result of 
its antioxidant capacity.[57,58] Inflammatory responses were 
suppressed by huperzine A (17) from Huperzia serrata with 
the restriction of NF-κB-signaling.[59] Costunolide (18) from 
Saussurea lappa (costus root oil) inhibited phosphorylation 
of IkB proteins, resulting in nuclear localization of 
NF-κB-complex. Furthermore, costunolide (18) inhibited 
LPS-induced inflammatory signaling pathway by curbing 
NF-κB-activation and downstream gene expression.[60] 
Ergolide (19) from Inula britannica (British yellowhead 
and Meadow fleabane) constrained NF-κB-activation in 

LPS-stimulated RAW 264.7 macrophages through inhibition 
of nuclear translocation of NF-κB-complex and degradation 
of IkB protein.[61] Helenalin A (20) from Arnica montana 
(wolf’s bane, Leopard’s bane, Mountain tobacco, and 
Mountain arnica) and Arnica chamissonis (Chamisso arnica) 
inhibited NF-κB-signaling through alkylation of p65 subunit 
of NF-κB complex, thereby inhibiting the complex DNA 
binding and transcription of NF-κB-dependent genes.[62] 
Nepalolide A (21) from Carpesium nepalense displayed anti-
inflammatory activity through the inhibition of LPS- and 
cytokine- induced activation of NF-κB-signaling in C6 glioma 
cells. The suppression of NF-κB-signaling occurred due to 
the inhibition of IkB protein phosphorylation in stimulated 
cells.[63] Parthenolide (22) of Tanacetum parthenium 
(feverfew) repressed the activity of IKKβ, a kinase subunit 
that played a vital function in cytokine-mediated signaling. 
Mutation of cysteine 179 in activation loop of IKKβ resulted 
in elimination of IKKβ binding sensitivity to parthenolide 
(22). Furthermore, anti-inflammatory activity of parthenolide 
(22) was facilitated through α-methylene γ-lactone moiety 
present in other sesquiterpene lactones. Parthenolide (22) 
alkylated cysteine-38 in p65 subunit of NF-κB-and inhibited 
DNA binding of NF-κB-complex.[64] Iso-deoxyelephantopin 
(23) from Elephantopus scaber inhibited osteoclastogenesis 
by suppressing NF-κB-activation and potentiated apoptosis. 
Furthermore, iso-deoxyelephantopin (23) reduced cytokine-
induced NF-κB-activation by suppressing IKK complex 
activity.[65] Hypoestoxide (24) from Hypoestes rosea inhibited 
IKKβ activation and inflammatory responses including 
colorectal cancer.[66,67] Genipin (25), from Gardenia fruit 
extract, displayed anti-inflammatory activity by inhibiting 
the expression of iNOS and NO production in RAW 264.7 
macrophages. Genipin (25) restricted the degradation of IkBb 
protein that led to inhibition of NF-κB-signaling.[68] Aucubin 
(26), an iridoid glycoside from Rehmannia glutinosa, 
exhibited its anti-inflammatory activity by inhibiting the 
degradation of IκBα protein and prevented the nuclear 
translocation of p65 subunit of NF-κB-complex. In addition, 
aucubin (26) acted as anti-inflammatory agent protecting 
against hepatotoxicity. Besides, aucubin (26) exhibited 
antitumor activity.[69,70] Acanthoic acid (27) from the bark of 
Acanthopanax koreanum curbed LPS-induced activation of 
IκBα phosphorylation and nuclear DNA binding of NF-κB-
complex in addition to the reduction in LPS-induced cytokine 
synthesis and pro-inflammatory response.[71] Kahweol 
(28) present in Coffea arabica (coffee beans) suppressed 
NF-κB-related transcriptional activation through inhibition 
of nuclear DNA binding of NF-κB-complex, IKK activity 
and prevented degradation of IkB proteins.[72,73] Catalposide 
(29) from Catalpa ovata (yellow catalpa. Chinese catalpa) 
curbed the activation of NF-κB, IκBα protein degradation 
and translocation of P65 sub-unit to the nuclei. Furthermore, 
catalposide (26) decreased TNF-α induced p38 and ERK 
phosphorylation through up-regulation of cytokine signaling 
thereby reducing intestinal inflammation.[74] Tanshinone IIA 

Figure 3: Carotenoids and phenols
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(30) from Salvia miltiorrhiza suppressed NF-κB-signaling 
and inhibited IKKα/β and NIK activation, consequently 
inhibiting the phosphorylation of IκBα protein as well as 
nuclear migration NF-κB-complex.[75] Triptolide (31) from 
Tripterygium wilfordii inhibited the phosphorylation of 
NF-κB-complex into nuclei and ultimately DNA binding 
of the complex. Furthermore, triptolide 32 curbed NF-κB-
signaling in T-lymphocytes by upregulating IκBα protein 
expression.[76,77] [Figure 4].

Several triterpenoids and their glycosides displayed anti-
inflammatory activity by interfering with NF-κB signaling 
pathway reducing inflammation. Betulinic acid (32) 
(pentacyclic triterpenoid), naturally occurring and widely 
distributed in plants such as Ancistrocladus heyneanus, 
Diospyros leucomelas, Prunella vulgaris (common selfheal), 
Pseudocydonia sinensis (Chinese quince), Pulsatilla 
chinensis, R. officinalis (rosemary), Syzygium formosanum 
(jambul), Tetracera boiviniana, Triphyophyllum peltatum, 
and Ziziphus mauritiana displayed anti-inflammatory 
activity by the suppression of IKKα activation which was 
initiated by certain typical NF-κB-activators followed by 
the downregulation of NF-κB-dependent gene expression.[78] 
Glycyrrhizin (33) from Glycyrrhiza glabra (liquorice) with 
the help of glycyrrhizic acid inhibited NF-κB-signaling. The 
calcium-mediated activation of NF-κB-system was blocked 

by glycyrrhizic acid. However, excessive use of liquorice 
could result in hypertension.[79] Lupeol (34) present in 
various fruits, vegetables, and several herbs inhibited NF-κB-
signaling including phosphorylation of IκBα protein, DNA 
binding of NF-κB-complex as well as NF-κB-related gene 
activity. Furthermore, lupeol (30) inhibited various signaling 
pathways such as AKT-dependent pathways, reducing the 
inflammation.[80-82] Acetyl-11-keto-ß-boswellic acid (35) 
from Boswellia serrata curbed constitutively activated 
NF-κB-signaling by inhibiting IKK activity. Psoriasis 
vulgaris is a chronic inflammatory skin disease involving 
cytokines and activated cellular immune system where 
psoriatic skin lesions display potent activation of NF-κB, 
mainly confined to dermal macrophages. Severe psoriasis 
lesion topical treatment with IKKβ inhibitor and acetyl-11-
keto-ß-boswellic acid (35) resulted in profound suppression 
of TNFα production of macrophages.[83] Celastrol (36) 
from Celastrus, tripterygium wilfordii, C. orbiculatus, and 
C. regelii intercepted the systolic I-Bα degradation and 
nuclear translocation of RelA and blocked IKK function 
together with IKKβ activity. Celastrol (36) inhibited 
numerous stimuli-induced NF-κB-regulated gene expression 
and DNA-binding of NF-κB-without affecting DNA-binding 
activity of activator protein-1 (AP-1). Celastrol (36) pre-
incubation entirely blocked LPS-, TNF-α−, or phorbol 
12-myristate 13-acetate (PMA)-induced degradation and 
phosphorylation of IκBα. Celastrol (36) primarily inhibited 
IKK and constitutively active IKKβ activities. Furthermore, 
NF-κB-activation was suppressed by celasterol (36) through 
targeting cysteine 179 in IKK. Celastrol (36) prevented LPS-
induced messenger ribonucleic acid (mRNA) expression 
iNOS and TNF--α as well as TNFα-induced antiapoptotic 
protein-BfI-1/A1 BfI-1/A1 expression. Celastrol (36) 
suppressed proliferation, invasion, and angiogenesis through 
the induction of apoptotic factors and reducing constitutive 
NF-κB-activity.[27,84] Ursolic acid (37), a natural pentacyclic 
triterpenoid carboxylic acid present in wide variety of plants, 
including apples, basil, bilberries, cranberries, peppermint, 
rosemary, and oregano inhibited the activation of NF-κB-
signaling initiated by different carcinogenic factors in various 
cell lines. Ursolic acid (37) restricted IκBα kinase activation, 
IkBα protein phosphorylation and degradation, p65 migration 
to nucleus and DNA binding of NF-κB-complex including 
NF-κB-related gene expression.[85] Escin (38), a constituent 
of Aesculus hippocastanum (horse chestnut), restricted 
TNF-induced IKK activation as well as I- Bα degradation 
and phosphorylation. Escin (38) strengthened TNF-
induced apoptosis and inhibited tumor cell invasion. This 
process was associated with the downregulation of B-cell 
leukemia/lymphoma 2 protein (Bcl-2) cellular inhibitor of 
apoptosis bcl-1 proto-oncogene product (cyclin D1), COX-
2, intercellular adhesion molecule-1, MMP-9, and vascular 
endothelial growth factor (VEGF) which were regulated 
by t NF-κB-activation. Accordingly, escin (38) inhibited 
the activation of NF-κB-through IKK inhibition resulting Figure 4: Mono-, sesqui- and di-terpenoids
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in sensitization of cells to cytokines and chemotherapeutic 
agents.[86] Saikosaponin D (39) from Bupleurum curbed 
NF-κB-signaling along with T-cell activation and apoptosis 
of cancer cells including inflammation. Saikosaponin D (39) 
blocked the phosphorylation of IκBα protein and increased 
protein level of inhibitory IκBα protein. In addition, 
saikosaponin D (39) constrained Jun-N-terminal kinase (JNK. 
c-jun amino-terminal kinase) signaling through upstream 
regulation of IKK and NF-κB-complexes [Figure 5].[87]

Avicin G (40), a triterpenoid glycoside from Acacia 
victoria (gundabluie and bardi bush), inhibited DNA 
binding of NF-κB-complex and expression of N-kB-
dependent genes, resulting in the reduction of inflammation 
[Figure 5].[88] Ginsenosides, a mixture of saponins of Panax 
species (ginseng) prevented the activation of IKKα kinase 
and phosphorylation and degradation of IκBα protein 
thereby inhibiting NF-κB - signaling either directly or 
indirectly. Ginsenosides, the main components of Panax 
ginseng, were well known for their anti-inflammatory and 
antiproliferative activities. Ginsenoside Rb 1 (42) was 
converted by intestinal bacteria to compound K (41). This 
metabolite showed a significant inhibitory effect on TNF-
α-induced expression of intercellular adhesion molecule-1 
in human astroglial cells. Pretreatment with compound K 
(41) suppressed TNF-α-induced phosphorylation of ΙκΒα 
kinase and the subsequent phosphorylation and degradation 
of IkBα. In addition, the treatment inhibited TNF-α-induced 
phosphorylation of mitogen-activated protein kinase 
kinase 4 and subsequent activation of JNK-activating 

protein kinase 1 (JNK-AP-1) pathway, suggesting that 
ginsenoside metabolite compound K (41) displayed anti-
inflammatory effect through the inhibition of both NF-κB-
and JNK pathways in a cell-specific manner.[89] Pregnane 
X receptor (PXR) activation displayed anti-inflammatory 
effects by blocking NF-κB. However, overactivation of 
PXR might disturb the homeostasis of multiple enzymes 
and transporters. Ginsenosides curbed NF-κB activation and 
reinstated the expression of PXR target genes in TNF-α-
stimulated LS174T cells. In addition, ginsenosides restrained 
NF-κB activation in a PXR-dependent manner and increased 
interaction between PXR and NF-κB p65 subunit and thus 
decreased the nuclear translocation of p65. Ginsenoside Rb1 
and compound K (41) were major bioactive compounds in 
controlling PXR/NF-κB signaling pathway. Ginsenosides 
attenuated dextran sulfate sodium-induced experimental 
colitis, associated with restored PXR/NF-κB signaling, 
suggesting that ginsenosides might cause anti-inflammatory 
effects by targeting PXR/NF-κB interaction without 
disrupting PXR function [Figure 6].[90]

In another study, compound Rb1 and its metabolite compound 
K (41) could inhibit colitis injury. Compound K (41) lessened 
colitis histopathology injury and improved myeloperoxidase 
activity. Furthermore, compound K (41) reduced pro-
inflammatory cytokines production, such as IL-6, IL-1β, 
TNF-α, and elevated anti-inflammatory cytokine IL-10 
production. Compound K (41) inhibited NF-κB p65 nuclear 
translocation, downregulated p-IκBα, and upregulated IκBα, 

Figure 5: Triterpenoids and glycosides
Figure 6: Triterpenoid glycosides, avicin G (40), compound K 
(41)and ginsenoside Rb1 (42)
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suggesting that compound K (41) suppressed the activation 
of NF-κB pathway in the progression of colitis [Figure 6].[91]

Several secondary metabolites regulated the defect in 
inflammatory pathways by suppressing NF-κB-activity with 
high selectivity. Epidemiological data suggested that intake 
of small amounts of polyphenols from foods and beverages 
exerts a strong effect in the reduction of inflammation and 
chronic diseases. It had been widely acknowledged that 
many plant-derived compounds exhibited significant anti-
inflammatory effects. These naturally occurring compounds 
displayed anti-inflammatory properties by their actions with 
the modulation of cytokines and associated intracellular 
signaling pathways.[92,93]

CONCLUSION

Plant and animal-derived constituents could prevent or inhibit 
NF-κB-signaling system, displaying therapeutic effects 
against inflammatory ailments including cancer. NF-κB, a key 
regulator of internal immune response, is activated as a host 
protection. However, chronic inflammation is tumorigenic 
and blocking the activities by inflammatory mediators 
suppresses tumor regression and its aggressiveness. Two 
separate pathways for NF-κB-activation include canonical 
pathway and non-canonical (alternative) pathway. These 
pathways are identified by differential requirement for 
IKK subunits. Several secondary metabolites of natural 
origin as well as small synthetic molecules target multiple 
signaling pathways including NF-κB-and p53. A number of 
natural constituents present in fruits, vegetables, and natural 
supplements could help in reducing or preventing chronic 
inflammation and related diseases.
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